Fast Decoders for Topological Quantum Codes

Guillaume Duclos-Cianci1 David Poulin1

1Département de Physique, Université de Sherbrooke, Qc, Ca

July 25th, 2010

Workshop on Quantum Algorithms, Computational Models, and Foundations of Quantum Mechanics
University of British Columbia, Vancouver, Ca
Topological Codes

- Logical subspace \rightarrow linked to the topology of the system
Motivation

Topological Codes

- Logical subspace → linked to the topology of the system
- Operators highly non-local → tailored to resist local noise
Topological Codes

- Logical subspace \rightarrow linked to the topology of the system
- Operators highly non-local \rightarrow tailored to resist local noise
- Error correction requires local measurements and operations
Topological Codes

- Logical subspace \rightarrow linked to the topology of the system
- Operators highly non-local \rightarrow tailored to resist local noise
- Error correction requires local measurements and operations
- Kitaev’s toric code \rightarrow useful toy model
Topological Codes

- Logical subspace \rightarrow linked to the topology of the system
- Operators highly non-local \rightarrow tailored to resist local noise
- Error correction requires local measurements and operations
- Kitaev’s toric code \rightarrow useful toy model
- Quantum error-correction (QEC) \rightarrow fast decoding algorithms
1. Kitaev’s Toric Code

2. Concatenation

3. Topological Codes Decoding
1 Kitaev’s Toric Code
 - Stabilizer generators
 - Logical Operators
 - Topology

2 Concatenation

3 Topological Codes Decoding
Stabilizer Generators
Lattice

- 2D square lattice
- Periodic boundary conditions
Lattice

- 2D square lattice
- Periodic boundary conditions
Lattice + Qubits

- 2D square lattice
Lattice + Qubits

- 2D square lattice
- Periodic boundary conditions
Lattice + Qubits

- 2D square lattice
- Periodic boundary conditions
- A qubit per edge
Kitaev's Toric Code

Lattice + Qubits

- 2D square lattice
- Periodic boundary conditions
- A qubit per edge
- $\Rightarrow 2\ell^2$ qubits
Stabilizer Generators

- Site (vertex) operator:
 \[A_s = \prod_{i \in v(s)} X_i \]
Stabilizer Generators

- Site (vertex) operator:
 \[A_s = \prod_{i \in v(s)} X_i \]

- Plaquette operator:
 \[B_p = \prod_{i \in v(p)} Z_i \]
Stabilizer Generators

- Site (vertex) operator: \[A_s = \prod_{i \in v(s)} X_i \]
- Plaquette operator: \[B_p = \prod_{i \in v(p)} Z_i \]
- \(\ell^2 \) site and plaquette operators
Stabilizer Generators

\[[A_s, A_{s'}] = [B_p, B_{p'}] = 0 \]
Stabilizer Generators

- $[A_s, A_{s'}] = [B_p, B_{p'}] = 0$
- $[A_s, B_p] = 0$
Stabilizer Generators

- $[A_s, A_{s'}] = [B_p, B_{p'}] = 0$
- $[A_s, B_p] = 0$
- The code is spanned by the simultaneous +1 eigenstates of all these

$$C = \{ |\psi\rangle : A_s |\psi\rangle = |\psi\rangle, B_p |\psi\rangle = |\psi\rangle (\forall s, p) \}$$
Stabilizer Generators

\[\prod_s A_s = I \]
Stabilizer Generators

\[\prod_s A_s = I \]
\[\prod_p B_p = I \]
Stabilizer Generators

\[\prod_s A_s = I \]
\[\prod_p B_p = I \]
\[\Rightarrow 2\ell^2 - 2 \text{ independent generators} \]
Stabilizer Generators

- $\prod_s A_s = I$
- $\prod_p B_p = I$
- $\Rightarrow 2\ell^2 - 2$ independent generators
- $\Rightarrow 2$ logical qubits
Logical Operators
First Logical Qubit

$$\overline{Z}_1 = \prod_{i \in \gamma_1} Z_i$$
First Logical Qubit

- $\overline{Z}_1 = \prod_{i \in \gamma_1} Z_i$
- $[\overline{Z}_1, B_p] = 0$
First Logical Qubit

- $\overline{Z}_1 = \prod_{i \in \gamma_1} Z_i$
- $[\overline{Z}_1, B_p] = 0$
- $[\overline{Z}_1, A_s] = 0$
First Logical Qubit

- $\overline{Z}_1 = \prod_{i \in \gamma_1} Z_i$
- $[\overline{Z}_1, B_p] = 0$
- $[\overline{Z}_1, A_s] = 0$
- $\forall s \in S \ [\overline{Z}_1, s] = 0$
First Logical Qubit

\[\overline{X}_1 = \prod_{i \in \gamma_1} X_i \]
First Logical Qubit

- \(\overline{X}_1 = \prod_{i \in \gamma_1} X_i \)
- \([\overline{X}_1, B_p] = 0 \)
First Logical Qubit

- \(\overline{X}_1 = \prod_{i \in \gamma_1} X_i \)
- \([\overline{X}_1, B_p] = 0 \)
- \([\overline{X}_1, A_s] = 0 \)
First Logical Qubit

- $\overline{X}_1 = \prod_{i \in \gamma_1} X_i$
- $[\overline{X}_1, B_p] = 0$
- $[\overline{X}_1, A_s] = 0$
- $\forall s \in S \ [\overline{X}_1, s] = 0$
Kitaev's Toric Code

First Logical Qubit

- \(\overline{X}_1 = \prod_{i \in \gamma_1} X_i \)
- \([\overline{X}_1, B_p] = 0 \)
- \([\overline{X}_1, A_s] = 0 \)
- \(\forall s \in S \ [\overline{X}_1, s] = 0 \)
- \(\{ \overline{X}_1, \overline{Z}_1 \} = 0 \)
Second Logical Qubit

- By reflecting around the diagonal
Second Logical Qubit

- By reflecting around the diagonal
- \(\{\overline{X}_2, \overline{Z}_2\} = 0 \)
Second Logical Qubit

- By reflecting around the diagonal
- $\{\overline{X}_2, \overline{Z}_2\} = 0$
- $[X_2, \overline{Z}_1] = 0$
Second Logical Qubit

- By reflecting around the diagonal
- $\{\overline{X}_2, \overline{Z}_2\} = 0$
- $[\overline{X}_2, \overline{Z}_1] = 0$
- $[\overline{X}_1, \overline{Z}_2] = 0$
By reflecting around the diagonal

- \(\{X_2, Z_2\} = 0 \)
- \([X_2, Z_1] = 0 \)
- \([X_1, Z_2] = 0 \)
- \([X_1, X_2] = 0 \)
- \([Z_1, Z_2] = 0 \)
New Basis

\[A_1, \ldots, A_{n/2 - 1}, B_1, \ldots, B_{n/2 - 1}, \bar{Z}_1, \bar{Z}_2 \]

\[tA_1, \ldots, tA_{n/2 - 1}, tB_1, \ldots, tB_{n/2 - 1}, \bar{X}_1, \bar{X}_2 \]
Topology
Trivial Cycles
Trivial Cycles
Trivial Cycles
Trivial Cycles
All A_s, B_p are trivial cycles

Topologically and logically trivial
Trivial Cycles

- All A_s, B_p are trivial cycles
- They act as the identity on the code space:

 $$A_s |\psi\rangle = B_p |\psi\rangle = +1 |\psi\rangle$$
Trivial Cycles

- All A_s, B_p are trivial cycles
- They act as the identity on the code space:
 \[A_s \ket{\psi} = B_p \ket{\psi} = +1 \ket{\psi} \]
- Topologically and logically trivial
\(\{ A_s, B_p \} \) span the set of trivial cycles
Trivial Cycles

\[\{ A_s, B_p \} \] span the set of trivial cycles
Trivial Cycles

- $\{A_s, B_p\}$ span the set of trivial cycles
- \Rightarrow all trivial cycles are equivalent to the identity on the code space
Non-Trivial Cycles
Non-Trivial Cycles
Non-Trivial Cycles
Non-Trivial Cycles
Non-Trivial Cycles

- \mathbb{Z}_1 and \mathbb{Z}_2 wind around the torus: non-trivial cycles
- They live on the lattice
Non-Trivial Cycles

- \overline{X}_1 and \overline{X}_2 are conjugate to \overline{Z}_1 and \overline{Z}_2
- They live on the dual lattice
Non-Trivial Cycles

- Non-trivial cycles have non-trivial effects on the code space
Homological/Logical Classes

\[|\psi\rangle = B_{p'} |\psi\rangle \]
Homological/Logical Classes

- $|\psi\rangle = B_{p'} |\psi\rangle$
- $\overline{Z}_1 |\psi\rangle = \overline{Z}_1 B_{p'} |\psi\rangle$
Homological/Logical Classes

- $|\psi\rangle = B_p' |\psi\rangle$
- $Z_1 |\psi\rangle = Z_1 B_p' |\psi\rangle$
- $Z_1 = Z_1 B_p'$
Homological/Logical Classes

- $|\psi\rangle = B_p' |\psi\rangle$
- $\overline{Z}_1 |\psi\rangle = \overline{Z}_1 B_p' |\psi\rangle$
- $\overline{Z}_1 \equiv \overline{Z}_1 B_p'$
Homological/Logical Classes

- $|\psi\rangle = B_p' |\psi\rangle$
- $\overline{Z}_1 |\psi\rangle = \overline{Z}_1 B_p' |\psi\rangle$
- $\overline{Z}_1 \equiv \overline{Z}_1 B_p'$
- $\overline{Z}_1 \equiv \overline{Z}_1 B_{p'} B_{p''}$
Kitaev’s Toric Code

Homological/Logical Classes

\[|\psi\rangle = B_{p'} |\psi\rangle \]
\[\overline{Z}_1 |\psi\rangle = \overline{Z}_1 B_{p'} |\psi\rangle \]
\[\overline{Z}_1 \equiv \overline{Z}_1 B_{p'} \]
\[\overline{Z}_1 \equiv \overline{Z}_1 B_{p'} B_{p''} \]
\[\overline{Z}_1 \equiv \overline{Z}_1 \prod_p B_p \]
Summary

Stabilizer ↔ Topology

- Every element of the stabilizer is a trivial cycle and vice-versa
- Every logical operator is a non-trivial cycle and vice-versa
- \Rightarrow Topological equivalence classes
1. Kitaev’s Toric Code

2. Concatenation
 - Concatenated codes
 - Efficient Optimal Decoder

3. Topological Codes Decoding
Concatenated Codes
Fast Decoders for Topological Quantum Codes

Codes

\[|\psi\rangle \rightarrow \left[[n,k,d] \right] \rightarrow |\overline{\psi}\rangle \]

Concatenation

Concatenated codes
Concatenated Codes

- k layers of encoding $\rightarrow n^k$ qubits
- Error rate decays doubly exponentially: $k \sim \log \epsilon$
Efficient Optimal Decoder
Optimal (Soft) Decoder

\[\{ \mathcal{P}(I), \mathcal{P}(X), \mathcal{P}(Y), \mathcal{P}(Z) \} \]

- Exponential in \(n \), but \(n \) is constant
- Distillates error probability on the logical qubits
Recursive Decoder

- k layers with at most n^k codes
- Complexity: $O(n^k k)$
1. Kitaev’s Toric Code

2. Concatenation

3. Topological Codes Decoding
The threshold is the noise strength under which it is useful to encode.
Previous Method

- PMA : perfect matching algorithm (Preskill, Landahl et al.)
Previous Method

- PMA: perfect matching algorithm (Preskill, Landahl et al.)
- Minimum distance decoder
Previous Method

- PMA: perfect matching algorithm (Preskill, Landahl et al.)
- Minimum distance decoder
- Complexity: $\mathcal{O}(\ell^6)$, in practice limited to $\ell \lesssim 100$
Previous Method

- PMA: perfect matching algorithm (Preskill, Landahl et al.)
- Minimum distance decoder
- Complexity: $O(\ell^6)$, in practice limited to $\ell \lesssim 100$
- Threshold of $\sim 15.5\%$ under depolarizing noise
Previous Method

- PMA: perfect matching algorithm (Preskill, Landahl et al.)
- Minimum distance decoder
- Complexity: $O(\ell^6)$, in practice limited to $\ell \lesssim 100$
- Threshold of $\sim 15.5\%$ under depolarizing noise
- Limited to Kitaev’s toric code

- We designed an algorithm inspired by the concatenated decoder

- We designed an algorithm inspired by the concatenated decoder
- Complexity: $\mathcal{O}(\ell^2 \log \ell)$ parallelizable to $\mathcal{O}(\log \ell)$ time

- We designed an algorithm inspired by the concatenated decoder.
- Complexity: $\mathcal{O}(\ell^2 \log \ell)$ parallelizable to $\mathcal{O}(\log \ell)$ time.
- Enabled decoding of a $\ell = 1024$ lattice without parallelizing.

- We designed an algorithm inspired by the concatenated decoder
- Complexity: $O(\ell^2 \log \ell)$ parallelizable to $O(\log \ell)$ time
- Enabled decoding of a $\ell = 1024$ lattice without parallelizing
- More resilient to noise: threshold of $\sim 16.5\%$ under depolarizing noise

- We designed an algorithm inspired by the concatenated decoder
- Complexity: $\mathcal{O}(\ell^2 \log \ell)$ parallelizable to $\mathcal{O}(\log \ell)$ time
- Enabled decoding of a $\ell = 1024$ lattice without parallelizing
- More resilient to noise: threshold of $\sim 16.5\%$ under depolarizing noise
- Not limited to toric code (e.g. color codes: triplet of defects)
Subcode

Imagine we had a surface encoding taking 2 qubits into 8.
Toric Code: A concatenation?

- We could recurse on this encoding to build a bigger surface code.
Toric Code : A concatenation?

- We could recurse on this encoding to build a bigger surface code.
If the toric code is just a concatenated code, then we know how to decode it efficiently!
Incomplete Stabilizers

- Some of the stabilizers are incomplete
We complete the stabilizer by adding qubits to the subcode.
By adding these qubits the construction is no more a concatenation.
Even though shared qubits correspond to the same physical entity, we are going to treat them as two different qubits with the same noise model.

Main approximation: Decode with the concatenated code decoder anyway.
Characterizing the subcode

- SubCode stabilizer generators : 10
Characterizing the subcode

- SubCode stabilizer generators : 10
- ⇒ 2 logical qubits
Results

- Is there a threshold at all? At best, these are size effects
By treating shared qubits as independent ones, we introduce inconsistencies.

A compromise between this and exact decoding would be to enforce consistency.
Generalized Belief Propagation (Jonathan S. Yedidja)

- Self-consistency constraints on shared qubits
- Neighboring unit cells exchange messages → Belief propagation
- Compromise on shared qubits
Intuition about GBP

Depolarizing Channel, $p << 1$
Intuition about GBP

Depolarizing Channel

$P(X) \sim 50\%$

$P(X) \sim p^2$

$P(X) \sim 50\%$

$P(X) \sim 50\%$
Intuition about GBP

0

1

2

3

$P(X) \sim p^2$ $P(X) \sim 50\%$

$P(X) \sim 50\%$ $P(X) \sim 50\%$
Intuition about GBP

$P(X) \sim \frac{1}{2}$

$P(X) \sim p^2$
Results

![Graph showing probability of error versus depolarizing channel strength for different lattice sizes.]

- $l=8$
- $l=16$
- $l=32$
- $l=64$

The graph plots the probability of error of the decoder against the depolarizing channel strength (p) for various lattice sizes (l).
Preliminary Physical Decoding

- BP on the bare stabilizers and qubits
Preliminary Physical Decoding

- BP on the bare stabilizers and qubits
- Accounts correlations between X and Z introduced by Y
Preliminary Physical Decoding

- BP on the bare stabilizers and qubits
- Accounts correlations between X and Z introduced by Y
- Its output is the input to the concatenated decoder
Results

![Graph showing the results of error probability as a function of depolarizing channel strength for different code lengths.](image)

- **Probaibilité d’erreur du décodeur**
- **Force du canal depolarizant, p (%)**
- **PMA**

The graph illustrates the error probability for decoders on topological quantum codes with varying code lengths, indicating how error rates increase with increasing channel strength.
Unit cell \((2 \times 1)\) + decoding the 2 types of defects independently \(\Rightarrow \ell = 1024\) lattice
Conclusion

- Topological codes use highly non-local operators to encode information
- We proposed an efficient ($O(\log \ell)$ time) to decode them → Concatenated codes, GBP
- More resilient to noise under depolarizing noise than known methods (16.5% vs. 15.5%)
- It enabled decoding of color codes $p_{th} \sim 8.7\%$ (Héctor Bombin)
Work in progress: Color Codes
Color Codes: Mapping

<table>
<thead>
<tr>
<th>X_i</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Z_i</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Color Codes: Results

Decoding error probability against Bit-Flip channel strength $p\%$ for different values of l (labeled as $l=16, 32, 64, 128, 256$).